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Abstract. We are interested in geometric approximation by parameterization of two-dimensional
multiple-components shapes, in particular when the number of components is a priori unknown. Start-
ing a standard method based on successive shape deformations with a one-component initial shape
in order to approximate a multiple-components target shape usually leads the deformation flow to
make the boundary evolve until it surrounds all the components of the target shape. This classical
phenomenon tends to create double points on the boundary of the approximated shape.

In order to improve the approximation of multiple-components shapes (without any knowledge on
the number of components in advance), we use in this paper a piecewise Bézier parameterization and
we consider two procedures called intersecting control polygons detection and flip procedure. The first
one allows to detect collisions between two parts of the boundary of the approximated shape, and the
second one permits to change its topology by dividing a one-component shape into a two-components
shape.

For an experimental purpose, we include these two processes in a basic geometrical shape opti-
mization algorithm and test it on the classical inverse obstacle problem. This new approach allows to
reconstruct numerically the unknown inclusion, detecting both the topology (i.e. the number of con-
nected components) and the shape of the obstacle. Several numerical simulations are performed and
underline the good behavior of this method.

Keywords. Shape approximation; free-form shapes; multiple-components shapes; Bézier curves; in-
tersecting control polygons detection; flip procedure; inverse obstacle problem; shape optimization.

Math. classification. 68U05; 68W25; 49Q10; 65N21.

1. Introduction

Geometric shape approximation methods are frequently based on successive shape deformations, where
the boundary of the approximated shape is parameterized and evolves at each step in a direction given
by the deformation flow. This technique is widely used for example in shape optimization problems
where the flow is given by the so-called shape gradient (see, e.g., Chapter 5 of the book [17] of Henrot
et al.), or in image segmentation (see, e.g., [18]). Numerous parameterizations of the boundary have
been considered in the literature, such as polygons, Fourier series, etc. Each of these parameterizations
has its own advantages and drawbacks, that depend on the nature of the problem studied.
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In this paper we are especially interested in the geometric approximation of multiple-components
shapes, in particular when the number of components is a priori unknown. Starting a parameterization
method with a one-component initial shape in order to approximate a multiple-components target
shape usually leads the deformation flow to make the boundary evolve until it surrounds all the
components of the target shape (see Figure 1 for illustrations). This classical phenomenon tends to
create double points on the boundary of the approximated shape.

Target shape

Approximated shape

(a) Two-dimensional case (b) Three-dimensional case

Figure 1. Geometric shape approximation of a two-components target shape starting
from a one-component initial shape.

In order to improve the approximation of multiple-components shapes, our idea is to look for an
appropriate parameterization that allows to achieve two numerical tasks. Firstly the parameterization
has to be well-suited in order to detect the formation of double points, i.e. to locate the parts of
the boundary that are close to each other. Secondly it has to be adapted in order to introduce a flip
procedure that allows to change the topology of the approximated shape, precisely to divide a one-
component shape into a two-components shape. Moreover, for practical uses, we look in this paper for
a complete method that is easily implementable with a relatively low numerical cost.

We present here a method based on a Bézier parameterization. The main idea is that this polynomial
parameterization can be approximated by its control polygon. As a consequence, one can easily detect
the formation of double points by looking for intersecting axis-aligned bounding boxes of the control
points of the Bézier parameterization. We refer to Section 3.3 for details on the so-called intersecting
control polygons detection. Once this first step is achieved, one can easily reorganize the previously
detected control points of the Bézier parameterization in order to modify the topology of the shape,
precisely in order to divide one component into two. We refer to Section 3.4 for details on the so-called
flip procedure.1

In this work we detail the above method in the two-dimensional case, using piecewise Bézier curves.
It is worth to mention that this method can be extended to the three-dimensional case, using piecewise
Bézier surfaces.

In order to test the flip procedure introduced in this paper, we perform numerical simulations on
a particular problem. Precisely we consider the inverse problem of detecting inclusions in a bounded
domain from boundary measurements. In this paragraph we briefly recall the three major techniques
used in the literature in order to study this problem. The first technique is the so-called level set
approach (see, e.g., the survey [7] of Burger et al. and references therein). In order to detect several
inclusions, this method does not need any a priori knowledge on the number of inclusions. However,
the level set methods are based on an implicit representation of the approximated shape and require
relatively complex techniques to be implemented, particularly in the case of inverse problems which
usually need some regularization methods. The second major technique is based on shape derivatives

1A similar procedure can be developed in order to merge two components into one. We refer to Section 4.3.6 for
details.
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(see, e.g., the work [1] of Afraites et al.). However, the standard algorithm based on shape derivatives
does not provide the opportunity to change the topology of the shape and consequently the number
of inclusions has to be known in advance. The third major method is the so-called topological gradient
introduced by Schumacher in [23] and Sokolowski et al. in [25]. However, this method is based on
asymptotic expansions and consequently is essentially adapted for relatively small inclusions. Moreover,
even if the topological optimization is useful in order to find the number of inclusions, it may be
not well-suited in order to find the actual shape of the inclusions. To conclude this paragraph, let
us mention that combinations of several shape optimization methods have recently been tested by
several authors. For instance we refer to the works of Allaire et al. in [2] and Burger et al. in [6] that
combine the classical geometric shape optimization through the level set method and the topological
gradient, to the work of Pantz et al. in [22] which develops an algorithm using boundary variations,
topological derivatives and homogenization methods and to the work of Caubet et al. in [9] which
couples topological and shape derivatives approaches.

The parameterization by piecewise Bézier curves and the flip procedure introduced in this paper
have several advantages in order to study the above inverse obstacle problem, in particular in the
case where the number of inclusions is a priori unknown. Firstly, the explicit Bézier representation
of the boundary is very simple to implement. Secondly, we use in this paper the shape derivatives
approach which allows to approximate the shape of the inclusions. Finally, the flip procedure permits
to dynamically change the topology of the shape in order to find the number of inclusions.

Organization of the paper. The paper is organized as follows. Section 2 recalls some basics
and notations about piecewise Bézier curves. Section 3 is concerned with the two main features of this
paper, that is, the intersecting control polygons detection and the flip procedure. Section 4 is dedicated
to several numerical simulations in the context of the inverse obstacle problem studied through a shape
optimization approach.

2. Notations and basics on piecewise Bézier curves

In this section we fix our notations and recall some basics about Bézier curves (see, e.g., [15, 24] for
more details). Let d ∈ N∗ and a set of d + 1 points P0, . . . , Pd of R2. The associated Bézier curve,
denoted by B([P0, . . . , Pd]), is defined by

∀t ∈ [0, 1], B([P0, . . . , Pd], t) :=
d∑
j=0

Pjbj,d(t),

where bj,d are the classical Bernstein polynomials given by

bj,d(t) :=

(
d

j

)
tj(1− t)d−j .

The integer d is the degree of the curve and the points P0, . . . , Pd are its control points (or its control
polygon). Note that a Bézier curve does not go through its control points in general. However it starts
at P0 and finishes at Pd. If P0 = Pd, the Bézier curve is said to be closed. Each point of a Bézier curve
is a convex combination of its control points. As a consequence, a Bézier curve lies in the convex hull
of its control polygon (see Figure 2).

Remark 2.1. As Bézier curves are widely used in Computer Aided Geometric Design (see [15, 24]),
they are commonly defined as parametric curves lying in the euclidean space R2 (or R3). However
this definition can be extended to Rn for any n ∈ N∗. In this paper, we are only interested in the
two-dimensional case n = 2.

3



P. Bonnelie, L. Bourdin, F. Caubet, & O. Ruatta

P0

P1

P2

P3

P4

Figure 2. A non-closed Bézier curve of degree 4 lying in the convex hull of its control
polygon.

In this paper we focus on the geometric approximation of continuous boundaries of two-dimensional
bounded shapes with the help of Bézier curves. In the sequel no distinction will be done between a
two-dimensional bounded shape and its continuous boundary.

Using a single closed Bézier curve in order to approximate a two-dimensional bounded shape is not
an efficient method for several reasons. Indeed, in order to approximate a shape with a lot of geometric
features, one would need to increase the degrees of freedom, i.e. the number of control points. However,
as very well-known, increasing the degree of an approximating polynomial curve leads to a classical
oscillations phenomenon and, in the particular case of a Bézier polynomial curve, it leads to numerical
instability (due to the ill-conditionness of the Bernstein-Vandermonde matrices). Moreover, since each
control point has a global influence on the curve, one could not handle local complexities of a shape
with a single Bézier curve. The classical idea is then to divide the curve in several Bézier curves of
small degrees. This leads us to recall the following definition of piecewise Bézier curves.

Let N ∈ N∗, d ∈ N∗ and a set of N(d+ 1) control points P1,0, . . . , P1,d, . . . , PN,d of R2 satisfying the

continuity relations Pi,d = Pi+1,0 for every i = 1, . . . , N − 1.2 The associated piecewise Bézier curve,

denoted by B([P1,0, . . . , PN,d])
3, is defined by

∀t ∈ [0, 1], B([P1,0, . . . , PN,d], t) := B([Pi,0, . . . , Pi,d], Nt− i+ 1), if t ∈
[
i− 1

N
,
i

N

]
.

The global curve is then composed by N Bézier curves called patches. Note that a piecewise Bézier
curve goes through Pi,0 and Pi,d for all i = 1, . . . , N . If P1,0 = PN,d, the piecewise Bézier curve is said
to be closed.

Remark 2.2. In practice we use cubic patches (d = 3) because they are sufficient in order to recover
many geometrical situations, such as inflexion points (see Figure 3).

Remark 2.3. In this paper, since each Bézier patch has the same degree d, the curve is said to be
uniform in degree. Nevertheless one can easily build piecewise Bézier curves with patches of different
degrees.

Adapting the proof of the classical Stone-Weierstrass theorem, one can easily prove the following
result (which corresponds to a particular case of the classical Bishop theorem, see [4]).

Theorem 2.4. Let f ∈ C([0, 1],R2). For all ε > 0 and all d ∈ N∗, there exist N ∈ N∗ and a
set of N(d + 1) control points P1,0, . . . , P1,d, . . . , PN,d, satisfying the continuity relations, such that
‖f(t)−B([P1,0, . . . , PN,d], t)‖R2 ≤ ε for all t ∈ [0, 1].

This result fully justifies the use of piecewise Bézier curves in order to approximate two-dimensional
bounded shapes.

2The continuity relations guarantee the well-definedness and the continuity of the piecewise Bézier curve.
3One would note here a conflict in notations of a Bézier curve and of a piecewise Bézier curve. In the sequel no

confusion is possible since we will only consider piecewise Bézier curves.
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Figure 3. A closed piecewise Bézier curve composed by seven cubic patches.

Remark 2.5. Recall that the use of polar coordinates, where the radius is expanded in a truncated
Fourier series, is another common and efficient strategy in order to approximate two-dimensional
bounded shapes (see, e.g., [1] in the context of inclusions detection). However it has two main draw-
backs. Firstly it allows to represent only star-shaped domains and secondly, due to a classical oscilla-
tions phenomenon, it cannot represent rigorously straight lines (see, e.g., [11, Figure 5 p.140] in the
context of inclusions detection). The use of piecewise Bézier curves is then an alternative in order to
approximate non star-shaped domains and straight lines (see Section 4.3 for some numerical simu-
lations in the context of inclusions detection). To conclude this remark, let us mention that the flip
procedure, which is the main feature of this paper, is based on the detection of collisions between two
parts of the boundary of the shape (see Section 3 for more details). Thus, it is worth to precise that
a parameterization based on polar coordinates, where the radius is expanded in a truncated Fourier
series, is not adapted to detect such collisions, in contrary to a piecewise Bézier parameterization (as
explained in Section 3.3).

3. Intersecting control polygons detection and flip procedure

In this paper we are interested in geometric two-dimensional shape approximation problems in which
the target shape can have multiple connected components but the number of components is unknown.
In such a case, starting a classical geometric approximation with a one-component initial shape may
lead to the situation depicted in Figure 4, that is, the deformation flow makes the boundary evolve
until it surrounds all the components of the target shape. This classical phenomenon tends to create
a collision between two parts of the boundary of the approximated shape.

In this paper our major aim is to provide a simple and new concept (called flip procedure) that can
be added to any shape approximation algorithm based on piecewise Bézier curves, and which allows
to change the topology of the approximated shape. Precisely, the flip procedure allows to divide a
one-component shape into a two-components shape.

Remark 3.1. In this paper, we focus on piecewise cubic Bézier curve (d = 3, see Remark 2.2).
However, this method can be extended to any d ≥ 2.

3.1. Overview

Let us consider a general geometric shape approximation algorithm in which the boundary of the
approximated shape is parameterized by a piecewise cubic Bézier curve. It starts from a one-component
initial shape ω0 and produces a sequence of one-component shapes (ωk)k≥0 by deforming the boundary
at each step. Our idea consists in two phases (that are summarized in Figure 5):
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Geometric shape
approximation

Target shape

Initial approximated shape

Final approximated shape

Figure 4. A geometric shape approximation of a two-components target shape start-
ing from a one-component initial approximated shape. The final approximated shape
surrounds the two components.

(1) check, at each step of the approximation algorithm, if the current shape ωk is in the situation
depicted in Figure 4, that is, if two parts of the boundary come closer and closer to each other.
The parameterization by piecewise Bézier curves allows us to detect such a situation by looking
for intersecting control polygons. This procedure will be called intersecting control polygons
detection and will be detailed in Section 3.3;

(2) if some control polygons intersect each other, we apply the flip procedure in order to obtain a
two-components shape by keeping unchanged all other control polygons. The flip procedure is
detailed in Section 3.4.

Shape ωk

Scan for
intersecting

control polygons

Two intersecting
control polygons

Flip

Two-components
shape

Figure 5. Overview of the complete procedure.

3.2. Two assumptions

In the sequel we will assume that the following hypotheses are both satisfied:

(1) the size of the control polygons (that is, the diameter of their convex hull) evolves in a fixed
interval [Smin, Smax], with 0 < Smin < Smax;

6



FLIP PROCEDURE IN APPROXIMATION OF MULTIPLE-COMPONENTS SHAPES

(2) the deformation step size of the shape approximation algorithm is chosen very small with
respect to Smin.

The first hypothesis allows to maintain numerical stability, avoiding to deal with very large patches
and/or very small ones.4 The second hypothesis allows to avoid the situation depicted in Figure 6.

(a) Iteration k - Two
control polygons get-
ting closer to each
other.

(b) Iteration k + 1
- The two control
polygons have
switched places
without intersecting
each other.

Figure 6. Deformation step too large.

Under these two assumptions, only two natural situations of intersection occur in practice. Either
one control polygon intersects exactly another one, or one control polygon intersects exactly two
consecutive ones (see Figure 7).5 The flip procedure handle these two situations, see Section 3.4.

P0

P1

P2
P3

Q0
Q1

Q2

Q3

(a) Case with two patches

P0

P1

P2

P3

Q0
Q1

Q2

Q3R0

R1

R2

R3

(b) Case with three
patches

Figure 7. Two natural situations of intersecting control polygons.

Remark 3.2 (Control of the size of the patches using split and merge functions). In order to keep
the sizes of the control polygons in the range [Smin, Smax], the diameter of the convex hull of each
control polygon is computed at each iteration. If a patch does not satisfy the size condition, it is either
split into two patches or merged with a neighbor patch. The split and merge functions (see [20] for
more details) are inverse operations and both use interpolation in order to compute the new control

4The first hypothesis is actually not restrictive (see details in Remark 3.2).
5Of course other situations of intersection can theoretically occur. However they are exceptional and very unlikely

in practice. In this paper, since we are interested in a practical use of the flip procedure, we will only consider the two
mentioned situations.
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polygons (see Figure 8). The split function divides a control polygon into two. Precisely, it interpolates
the first half of the patch and, in a second time, interpolates the other half. Since each half of the patch
is a Bézier curve, the shape is not modified after a split. The merge function is the reverse operation.
From two consecutive control polygons Q and R, it computes one patch that interpolates the four
points B(Q, 0), B(Q, 2

3), B(R, 1
3) and B(R, 1). Then one starts from eight control points and ends

with four. Note that merging polygons modifies slightly the boundary.

P

Q R

(a) (Q,R) ←− Split(P ) - The bound-
ary is not modified.

Q

R

P

(b) P ←− Merge(Q,R) - The boundary is
slightly modified.

Figure 8. Examples of the split and merge functions.

3.3. Intersecting control polygons detection

Checking if each control polygon intersects another one may be very expensive in terms of compu-
tations. Axis-Aligned Bounding Boxes (AABBs) are a very common tool in Computer Graphics and
Computational Geometry in order to detect the collision of two objects (see, e.g., [14]), with a rela-
tively low computational cost. AABB is defined as the smallest rectangle, whose sides are aligned with
the axes, containing the control polygon (see Figure 9).

x

y

Figure 9. AABBs of control polygons.

A necessary condition for two intersecting control polygons is clearly the intersection of their re-
spective AABBs. As a consequence, instead of looking directly for intersecting control polygons, we
first look for intersecting AABBs. Thus, the intersecting control polygons detection consists in two
steps:

(1) we first list all the pairs of intersecting AABBs;
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(2) in a second time, we check these pairs in order to see if the associated control polygons intersect.
To do so, we directly check the 9 segment-segment intersections of the polygons (see, e.g., [21]).

Finally, each pair of intersecting control polygons will be given as input to the flip procedure detailed
in the following section.

3.4. The flip procedure

As above mentioned in Section 3.2, only two cases of intersecting control polygons are considered (see
Figure 7). The flip procedure described in this section is a simple tool that can be easily implemented.

First case: two intersecting polygons. From P = {P0, P1, P2, P3} and Q = {Q0, Q1, Q2, Q3}
being two intersecting polygons of a same connected component, the flip procedure builds two new
polygons as follows, (see Figure 10):{

P0, P0 +
1

3

−−−→
P0Q3, P0 +

2

3

−−−→
P0Q3, Q3

}
and

{
Q0, Q0 +

1

3

−−−→
Q0P3, Q0 +

2

3

−−−→
Q0P3, P3

}
.

P0

P1

P2
P3

Q0
Q1

Q2

Q3

Flip

P0

P3

Q0

Q3

Figure 10. Flip procedure - Case of two control polygons.

Second case: three intersecting polygons. The case with three control polygons is very sim-
ilar. From P = {P0, P1, P2, P3} being a control polygon intersecting two consecutive ones Q =
{Q0, Q1, Q2, Q3} and R = {R0, R1, R2, R3}, the flip procedure builds two new polygons as follows,
(see Figure 11):{

P0, P0 +
1

3

−−−→
P0R3, P0 +

2

3

−−−→
P0R3, R3

}
and

{
Q0, Q0 +

1

3

−−−→
Q0P3, Q0 +

2

3

−−−→
Q0P3, P3

}
.

4. Application to multiple-inclusions detection

This section focuses on the problem of reconstructing numerically an obstacle ωex living in a larger
bounded domain Ω of R2 from boundary measurements. Our aim is in particular to test the flip proce-
dure introduced in this paper in the case where ωex is a two-components obstacle (see Section 4.3.4).
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P0

P1

P2

P3 Q0
Q1

Q2

Q3R0

R1

R2

R3

Flip

P0

R3

Q0P3

Figure 11. Flip procedure - Case of three control polygons.

In order to solve numerically the above inverse obstacle problem, we will actually consider a shape
optimization problem, by minimizing a shape cost functional. In this paper we use the classical ge-
ometrical shape optimization approach, based on shape derivatives and on a shape gradient descent
method. We refer to the classical books of Henrot et al. [17] and of Soko lowski et al. [26] for more
details on the techniques of shape differentiability.

Let us fix some notations that will be used in this section. We denote by Lp, Wm,p and Hs the
usual Lebesgue and Sobolev spaces. We note in bold the vectorial functions and spaces, such as Wm,p.
Let Ω be a nonempty bounded connected and Lipschitz open set of R2 and let g ∈ H1/2(∂Ω) such
that g 6= 0. We denote by n the external unit normal to ∂Ω, and for a smooth enough function u, we
denote by ∂nu the normal derivative of u.

Let d0 > 0 be fixed (small). In the sequel Od0 stands for the set of all open subsets ω strictly
included in Ω, with a C1,1 boundary, such that the distance d(x, ∂Ω) from x to the compact ∂Ω is
strictly greater than d0 for all x ∈ ω, and such that Ω\ω is connected. Finally we also introduce Ωd0

an open set with a C∞ boundary such that

{x ∈ Ω ; d(x, ∂Ω) > d0/2} ⊂ Ωd0 ⊂ {x ∈ Ω ; d(x, ∂Ω) > d0/3} .

4.1. Problem setting

We focus on the following inverse problem. Assume that an unknown obstacle ωex ∈ Od0 is located
inside Ω. We consider hereafter the Laplace equation in Ω\ωex with homogeneous Dirichlet boundary
condition on ∂ωex and non-homogeneous Dirichlet boundary condition on ∂Ω. Precisely we denote by
uex ∈ H1(Ω\ωex) the unique solution of the problem −∆u = 0 in Ω\ωex,

u = g on ∂Ω,
u = 0 on ∂ωex.

(4.1)

Our main purpose is to reconstruct the unknown shape ωex, assuming that a measurement is done on
the exterior boundary ∂Ω. Precisely we assume in this paper that we know exactly the value of the
measure fb := ∂nuex ∈ H−1/2(∂Ω) on ∂Ω. Thus we are interested in the following geometric inverse
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problem:

find ω ∈ Od0 and u ∈ H1(Ω\ω) which satisfies the overdetermined system
−∆u = 0 in Ω\ω,

u = g on ∂Ω,
∂nu = fb on ∂Ω,
u = 0 on ∂ω.

(4.2)

The existence of a solution is trivial since we assume that the measurement fb is exact. From the
classical Holmgren theorem one can easily obtain an identifiability result for this inverse problem which
claims that the solution is unique. This fundamental question about uniqueness of a solution to the
overdetermined problem (4.2) was deeply studied, see for example [5, Theorem 1.1], [12, Theorem 5.1]
or also [13, Prop. 4.4 p. 87].

Remark 4.1. Actually we could assume that the measurement fb is done only on a nonempty subset O
of ∂Ω. All the presented result can be adapted to this case (see, e.g., [8]).

In order to solve the inverse problem (4.2) we will actually focus on the shape optimization problem

ω∗ ∈ argmin
ω∈Od0

J(ω), (4.3)

where J is the nonnegative least-squares functional defined by

J(ω) :=

∫
∂Ω
|∂nuω − fb|2 ,

where uω ∈ H1(Ω\ω) is the unique solution of the problem −∆u = 0 in Ω\ω,
u = g on ∂Ω,
u = 0 on ∂ω.

(4.4)

Indeed, the identifiability result ensures that J(ω) = 0 if and only if ω = ωex. Finally, in order to solve
numerically the shape optimization problem (4.3), we will now compute the shape gradient of the cost
functional J and apply a classical gradient descent method.

4.2. Computation of the shape gradient.

In order to define shape derivatives, we will use the velocity method introduced by Murat et al. in [19].
We first introduce the space of admissible deformations given by

U := {V ∈W2,∞; Supp V ⊂ Ωd0}. (4.5)

In particular we are interested in the shape gradient of J defined by

DJ(ω) · V := lim
t→0

J
(
(I + tV )(ω)

)
− J(ω)

t
,

for every ω ∈ Od0 and every V ∈ U . For sake of completeness, we recall the proof of the following
result in Appendix A.

Proposition 4.2. The least-squares functional J is differentiable at ω ∈ Od0 in the direction V ∈ U
with

DJ(ω) · V = −
∫
∂ω
∂nuω ∂nwω (V · n) , (4.6)
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where wω ∈ H1(Ω\ω) is the unique solution of the adjoint problem given by −∆w = 0 in Ω\ω,
w = 2 (∂nuω − fb) on ∂Ω,
w = 0 on ∂ω.

(4.7)

From the above explicit formulation of the shape gradient of J , we are now in a position to implement
some numerical simulations based on a classical gradient descent method, including the flip procedure
introduced in this paper in order to detect in particular a multiple-components obstacle.

4.3. Numerical simulations

Before coming to numerical simulations, let us recall that many difficulties can be encountered in order
to solve numerically Problem (4.3), as explained in [1, Theorem 1] (see also [3, Proposition 2.4]). Indeed,
the gradient has not a uniform sensitivity with respect to the deformation directions. However, we use
in this paper a parametric model of shape variations using piecewise Bézier curves which corresponds
to a regularization method (as the truncated Fourier series used in [1]) allowing to overcome the
ill-posedness of the inverse problem and then to solve it numerically.

4.3.1. Framework for the numerical simulations

The numerical simulations presented hereafter are performed in the two-dimensional case using the
finite element library FreeFem++ (see [16]). The exterior boundary ∂Ω is assumed to be the circle
centered in the origin and of radius 10 and we consider the exterior Dirichlet boundary condition
g = 100. In order to get a suitable measure fb, we use a synthetic data, that is, we fix a shape ωex and
solve Problem (4.1) using a finite element method (here P2 finite element discretization) and extract
the measurement fb by computing ∂nuex on ∂Ω.

Then we use a P1 finite element discretization to solve Problems (4.4) and (4.7) with 50 discretiza-
tion points for both the exterior boundary and each cubic Bézier patch describing the shape ω. In order
to numerically solve the optimization problem (4.3), we use the following classical gradient descent
algorithm and we include the flip procedure at Step (3).

Algorithm A

(1) Fix k = 0, fix an initial shape ω0, fix a maximal number M ∈ N∗ of iterations and fix λ ≥ 1 a
given tolerance coefficient for the flip procedure (see Step (3), λ should be chosen close to 1).

(2) Control the size of the patches of ωk (see Remark 3.2).

(3) Scan ωk looking for intersecting control polygons (see Section 3.3):

(a) in the case of no intersecting control polygons, go to Step (4);
(b) in the case of intersecting control polygons:

(i) apply the flip procedure and obtain a multiple-components shape ω1
k ∪ ω2

k (see Sec-
tion 3.4);

(ii) compute J(ωk) and J(ω1
k ∪ ω2

k):
(A) if J(ω1

k ∪ ω2
k) ≥ λJ(ωk), then go to Step (4);

(B) else, do ωk ← ω1
k ∪ ω2

k.

(4) Solve Problems (4.4) and (4.7) with ω = ωk.

(5) Compute the shape gradient DJ(ωk) from Formula (4.6).

12
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(6) Move the control points of the shape, that is, do ωk+1 ← ωk − αDJ(ωk), where α is a positive
coefficient chosen by a classical line search.

(7) Do k ← k + 1 and get back to Step (2) while k < M .

4.3.2. First simulations: detection of smooth and convex shapes

We first test Algorithm A on the problem of detecting one smooth convex object. Precisely, we begin by
detecting the circle centered at the origin and of radius 6 and the ellipse {(8 cos θ, 5 sin θ), θ ∈ [0, 2π]}
using four cubic Bézier patches. Figure 12 shows the effectiveness of our method for these objects.

 

 

Exterior boundary

Exact shape

Initial shape

Approximated shape

(a) Detection of a circle

 

 

Exterior boundary

Exact shape

Initial shape

Approximated shape

(b) Detection of an ellipse

Figure 12. Detection of simple, convex and smooth obstacles.

4.3.3. Detection of a non-smooth shape and of a non-convex shape

We test now the effectiveness of Algorithm A on the problem of detecting a non-smooth shape and
of detecting a non-convex shape (see Figure 13). Precisely we first consider the square of side 10 and
centered at the origin and we use four cubic Bézier patches. As one can see in Figure 13(a), each
Bézier patch detects a side of the square. Secondly, in Figure 13(b), we consider the non-convex shape
parameterized by {(2.8(1.6 + cos(3θ)) cos(θ), 2.8(1.6 + cos(3θ)) cos(θ)), θ ∈ [0, 2π]}, using six cubic
Bézier patches.6 One can see that the reconstruction is here effective.

4.3.4. Detection of two obstacles starting from a one-component shape

In this section we test the flip procedure introduced in Section 3 in order to detect a two-components
shape starting from a one-component initial shape. We consider two circles of radius 2 centered at
(−4,−4) and (4, 4). We present different states of the algorithm in Figure 14. The initial Bézier shape
consists in a single component with four cubic Bézier patches, located at the center (Figure 14(a)).

6This shape is also considered in [10, Figure 4] where authors obtained the convex hull of the shape. However, note
that the authors used a different method where the descent direction is obtained by solving a boundary value problem
involving the kernel of the shape gradient.
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Exterior boundary

Exact shape

Initial shape

Approximated shape

(a) Detection of a square

 

 

Exterior boundary

Exact shape

Initial shape

Approximated shape

(b) Detection of a non-convex shape.

Figure 13. Detection of a non-smooth obstacle and of a non-convex obstacle.

The shape grows and surrounds the two objects until two control polygons intersect each other (Fig-
ure 14(b)). The flip procedure is performed and the shape is divided in two connected components
(Figure 14(c)). At the end, the algorithm has detected the two obstacles (Figure 14(d)).

4.3.5. Checking the objective function value after a flip procedure

In Algorithm A, Step (3(b)iiA) makes sure that, whenever a flip procedure is performed, the objective
function value does not significantly increase. If J(ω1

k ∪ ω2
k) ≥ λJ(ωk) (for instance λ = 1.1), then

we consider that adding another component to the shape is not a wise choice and we cancel the
flip procedure. This situation can emerge when the target shape has a single component with two
parts of its boundary very close to each other. In such a case Algorithm A probably leads to two
control polygons intersecting each other and to a flip performance, while the target shape has a single
component. We present an example of such a situation in Figure 15. One can see in blue the obstacle
composed by one component that has two parts of its boundary very close to each other. The current
shape ωk of the algorithm in red has two control polygons intersecting each other. The objective
function value before the flip procedure is J(ωk) = 1061 and after the flip procedure, it has increased
to J(ω1

k ∪ ω2
k) = 1574. Since the ratio is greater than λ, the algorithm cancels the flip procedure and

go to Step (4).

4.3.6. Detection of one obstacle starting from a two-components shape

In this paper we have introduced the flip procedure as a method that enables to divide a one-component
shape into a two-components shape. Actually the flip procedure can be easily adapted in order to
perform the reverse operation, that is, to merge a two-components shape into a one-component shape
(see Figure 16).

We focus now on the detection of the one-component shape {(4 cos θ, 6 + 2.5 sin θ), θ ∈ [0, 2π]} and
we start Algorithm A with a two-components shape. We present different states of the algorithm in
Figure 17. At the end, the algorithm has detected the one-component obstacle.
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Exterior boundary

Exact shape

Approximated shape

(a) Initial shape

 

 

Exterior boundary

Exact shape

Approximated shape

(b) Intersecting control polygons

 

 

Exterior boundary

Exact shape

Approximated shape

(c) Flip procedure

 

 

Exterior boundary

Exact shape

Approximated shape

(d) Final shape

Figure 14. Detection of two obstacles starting from a one-component shape

5. Conclusion and perspectives

In this paper we studied the use of piecewise Bézier parameterizations for the representation of shapes
in geometric approximation based on successive shape deformations. We proposed procedures and
algorithms in order to manipulate these parameterizations and showed how to manage changes of
topology and so multiple-components shape approximation. We applied this approach to a problem of
multiple-inclusions detection and showed numerically its efficiency. We described results obtained from
an experimental implementation using FreeFem++ and showed the good behavior of the algorithm.
The computational efficiency of the method arises from the simplicity and the flexibility of the pro-
posed parameterizations. We considered here a two-dimensional problem, but extension to the higher
dimensional case may be interesting and the algorithmic contents can be generalized. To conclude, the
implementation described here was made for an experimental purpose and a complete and optimized
implementation may be proposed. Applications to other shape detection problems may be studied
also.
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Exterior boundary

Exact shape

Approximated shape

(a) Before the flip procedure, J(ωk) =
1061

 

 

Exterior boundary

Exact shape

Approximated shape

(b) After the flip procedure, J(ω1
k∪ω2

k) =
1574

Figure 15. The objective function value significantly increases whenever the flip pro-
cedure is not needed.

Two-components
shape

Scan for
intersecting

control polygons

Two intersecting
control polygons

Flip

The two components
have merged

Figure 16. The flip procedure merges a two-components shape into a one-component
shape.

Appendix A. Proof of Proposition 4.2

We detail here the classical proof of Proposition 4.2 for the reader’s convenience. For any V ∈ U
(whereU is defined by (4.5)), we introduce the perturbed domain ωt := (I+tV )(ω) and the functional j
defined for all t ∈ [0, T ) by j(t) := J(ωt) and we consider the unique solution ut ∈ H1(Ω\ωt) of the
perturbed problem  −∆ut = 0 in Ω\ωt,

ut = f on ∂Ω,
ut = 0 on ∂ωt.

Let us recall the definition of the shape derivative in our situation (see [17] for details). We introduce

U :=

{
θ ∈ U ; ‖θ‖2,∞ < min

(
d0

3
, 1

)}
.

Then,
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Exterior boundary

Exact shape

Approximated shape

(a) Two-components initial shape

 

 

Exterior boundary

Exact shape

Approximated shape

(b) Intersecting control polygons

 

 

Exterior boundary

Exact shape

Approximated shape

(c) Flip procedure - The two compo-
nents have merged

 

 

Exterior boundary

Exact shape

Approximated shape

(d) Final shape

Figure 17. Detection of one obstacle starting from a two-components shape

• if the mapping θ ∈ U 7→ uθ ◦ (I + θ) ∈ H1(Ω\ω) is Fréchet differentiable at 0, we say that
θ 7→ uθ possesses a total first variation (or derivative) at 0. In such a case, this total first
derivative at 0 in the direction θ is denoted by

.
uθ;

• if, for every D ⊂⊂ Ω\ω, the mapping θ ∈ U 7→ uθ D ∈ H1(D) is Fréchet differentiable at 0,
we say that θ 7→ uθ possesses a local first variation (or derivative) at 0. In such a case, this
local first derivative at 0 in the direction θ is denoted by u′θ, is called shape derivative and is
well defined in the whole domain Ω\ω:

u′θ =
d

dt
(utθ D) t=0 in each D ⊂⊂ Ω\ω.

In the sequel, let V ∈ U and let u′ be the local first variation u′V which is referred as the shape
derivative of the state.

The differentiability of the cost functional J is directly obtained from the existence of the shape
derivative of the state u given for example in [17, Theorem 5.3.1]. Notice that in [17, Theorem 5.3.1],
the result claims the differentiability of t ∈ [0, T ] 7→ ũt ∈ L2(Ω), where ũt is an extension of ut in Ω.
Since we want to obtain the differentiability of t ∈ [0, T ] 7→ ũt ∈ H1(Ω) (in order to differentiate
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properly the functional J), we have here to work with the mentioned spaces, that is with a domain ω
with a C1,1 boundary (and not only Lipschitz) and perturbations V which belong to W2,∞(R2) (and
not only to W1,∞(R2)).

Moreover we can easily characterize the shape derivative u′ ∈ H1(Ω\ω) as the solution of the
following problem (see again for example [17, Theorem 5.3.1]): −∆u′ = 0 in Ω\ω,

u′ = 0 on ∂Ω,
u′ = −∂nu (V · n) on ∂ω.

(A.1)

Then by differentiation under the sum sign, we obtain

j′(0) = 2

∫
∂Ω
∂nu

′(∂nu− fb).

Using the weak formulation of Problem (A.1) solved by u′ with w as a test function, we obtain∫
Ω\ω
∇u′ · ∇w −

∫
∂(Ω\ω)

w ∂nu
′ = 0

and using the weak formulation of the adjoint Problem (4.7) solved by w with u′ as a test function,
we obtain ∫

Ω\ω
∇w · ∇u′ −

∫
∂(Ω\ω)

u′ ∂nw = 0.

Finally, using the boundary conditions, the proof is complete.
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